A Geometrically Non Linear Structural Response Biology Essay

Published: 2021-06-20 15:50:06
essay essay

Category: Biology

Type of paper: Essay

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

Hey! We can write a custom essay for you.

All possible types of assignments. Written by academics

GET MY ESSAY
Acknowledgments
This Master of Science Thesis arose from my stay as visiting master student at the Technical
University of Denmark, DTU Wind Energy at Risø Campus. During my work in the
department of Wind Turbine Structures, I could benefit from well developed software tools
and the knowledge gained by the full-scale test facility at Risø Campus. As well, I had the
opportunity to visit the Blade Test Centre A/S in Aalborg.
First, I would like to thank my supervisor from the University of Applied Sciences Bre-merhaven, Professor Henry Seifert for his trust and the helpful references. Second, thanks
to my co-supervisor, Senior Scientist Kim Branner to make contact with me and to take
over the role as supervisor from DTU Wind Energy.
Thanks to my advisor, Scientist Peter Berring for his great assistance in numerical and
analytical studies, and his donated time. Thanks to my advisor, Development Engineer
Magda Nielsen, who gave me the opportunity work in the test facility, and useful com-ments while writing this work. Thanks to Development Engineer Angelo Tesauro for his
discussions and the experiences with measurement facility. Thanks to Anne Margrethe
Larsen for her help with the Risø Linux Cluster ’Gorm’.
Further thanks to the PROMOS scholarship committee at the University of Applied
Sciences Bremerhaven for the financial support during my time in Denmark.
Roskilde, February 12, 2013
Abstract
A geometrically non-linear structural response of a 34 m wind turbine blade under flap-wise loading was compared with a linear analysis to show the need of non-linear analysis
in wind turbine blade design. Non-linear effects revealed from a numerical finite element
model were compared with an analytical plate model of the capunder compression load.
The plate model was subjected to a transversal load due to thenon-linear Brazier effect,
and to in-plane loading to reveal the local cap displacementand the buckling resistance
respectively. Focus was on the verification of the characteristic and design resistance in the
ultimate strength and stability limit state. For the designresistance, an analysis due to the
lowest GL requirements was used and compared with the results of a non-linear approach
proposed by GL that required the application of an imperfection to the model. The way
to apply an imperfection due to Eurocodeseemed more realistic compared with GL’s
approach. Numerous simulations revealed the requirement of non-linear analysis methods
in design of wind turbine blades. A linear analysis due to the lowest GL requirements
yielded less conservative results than a non-linear approach proposed by GL. That led to
the fact, that the investigated blade designed after the lowest requirements would pass the
certification, whereas the same blade design verified with the non-linear approach would
not. The non-linear structural response was significantly dependent on the scaling of an
applied imperfection.
Contents i
Contents
Figures v
Tables vii
Notation ix
1 Introduction 1
2 State-of-the-Art 5
2.1 Standards and Guidelines in Wind Energy . . . . . . . . . . . . . . . . . . . 5
2.2 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Process Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Partial Safety Factors due to GL . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Analysis due to GL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Analysis Methods due to Eurocode . . . . . . . . . . . . . . . . . . . . . . . 11
3 Theoretical Background 15
3.1 Rotor Blade Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Composite Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Macromechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Classical Laminate Theory . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Unsymmetrically Cross-Ply Laminated Plates . . . . . . . . . . . . . 20
3.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Non-linear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Analytical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Methods 31
4.1 Finite Element Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Materials and Layup . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.5 Load Application and Constraints . . . . . . . . . . . . . . . . . . . . 36
4.1.6 Solver Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.7 Output Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ii Contents
4.1.8 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.9 Model Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Global Blade Deflection . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Strain Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Local Displacement of the Cap . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Buckling Resistance of the Cap . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Strength Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.5.1 Characteristic Resistance . . . . . . . . . . . . . . . . . . . 42
4.2.5.2 Design Resistance . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.6 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.6.1 Characteristic Resistance . . . . . . . . . . . . . . . . . . . 46
4.2.6.2 Design Resistance . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.7 Stimulation of Imperfections . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.7.1 Global Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.7.2 Local Modification . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Analytical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Global Deflection of the Blade . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Strain Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Local Displacement of the Cap . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Buckling Resistance of the Cap . . . . . . . . . . . . . . . . . . . . . 56
5 Results 59
5.1 Plausibility of the FEA Results . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Strength Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Characteristic Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Design Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Characteristic Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Design Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Stimulation of Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Discussion 75
6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.1 Finite Element Model Setup . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.2 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.3 Analytical Computations . . . . . . . . . . . . . . . . . . . . . . . . . 76
Contents iii
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.1 Plausibility Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2 Non-linear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.3 Load Carrying Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.4 Verification of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.5 Stimulation of Imperfections . . . . . . . . . . . . . . . . . . . . . . . 80
7 Conclusions 83

Warning! This essay is not original. Get 100% unique essay within 45 seconds!

GET UNIQUE ESSAY

We can write your paper just for 11.99$

i want to copy...

This essay has been submitted by a student and contain not unique content

People also read